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SUMMARY

1. An analysis is made of the transmission of mechanical forces through
the Pacinian corpuscle. In particular, forces are analysed which produce
pressure differences at the centre of the corpuscle and lead to excitation of
the sensory nerve ending.

2. The main structural elements in force transmission through the
corpuscle are the lamellae, their interconnexions, and the interlamellar
fluid. The two former provide the elastic elements and constraint for the
fluid; and the latter, the viscous elements. The mechanical equivalent
incorporating these elements is a system of dashpots (the lamellar surfaces
and the interlamellar fluid) and springs (the lamellae and their inter-
connexions); it is a mechanical filter which suppresses low frequencies. The
dynamic and static patterns of lamella displacements in the equivalent are
in close agreement with those observed in Pacinian corpuscles.

3. Steady-state and transient pressure fields were determined for the
equivalent. Under static compression, only elastic forces exist in the
corpuscle. Analysis shows that such forces are transmitted poorly from
periphery to centre through the lamellated structure. The compliance of
the lamellar interconnexions is so high in relation to that of the lamellae
themselves, that most of the pressure load is carried by the outer lamellae.
As a result, only a small fraction of the steady-state pressure at the outer
surface reaches the centre of the corpuscle where the sensory ending is
located. This is the mechanical basis of receptor adaptation.

4. Under dynamic compression, viscous forces develop in the corpuscle;
and these account for most of the pressure at times too early for develop-
ment of elastic deformations. Analysis shows that such forces are trans-
mitted well. For example, if a typical corpuscle of 500,u diameter is
compressed by 20,u linearly during 2 msec, the pressure differences near to
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the centre of the corpuscle are initially as high as at the periphery, and
stay within the same order throughout the process of compression. In
general, pressure at the centre increases steeply with velocity of compres-
sion. This explains the marked velocity dependence of the generator
response of the sensory ending.

If, in the foregoing example, the 20,u compression is held fixed after
2 msec, the pressure differences at the centre fall abruptly to near zero
with the onset of the static phase. The duration of pressure transients at
the centre approximates that of the 'active' phase of the generator current
of the sensory ending derived from experiments, as expected in a causal
relationship: pressure difference -* generator current. Taken together
with the earlier experimental finding of marked prolongation of generator
response in corpuscles partially stripped of lamellae (Loewenstein & Men-
delson, 1965), this result warrants the conclusion that the mechanical
filter action of the corpuscle is the rate-limiting factor in generator
response adaptation.

5. When the corpuscle is released from compression, energy stored in
the elastic elements during compression is released and consumed in
viscous flow. Thus, viscous pressure is produced anew. The magnitude of
this pressure depends on the velocity of release. The pressure distribution
is rotated by 900 with respect to that in compression; i.e. during release,
compression occurs once again, but this time at right angles to the direction
of initial compression. Experiments show that the sensory ending does
not discriminate such a rotation; the polarity and order of magnitude of
the generator response to compression in one plane are the same as in
another. Analysis shows that considerable pressure differences may be
developed at the centre of the corpuscle during releases at physiological
velocities. For instance, in a passive return from a compression of 20t,
the pressure difference at the centre (and the generator current) is of the
same order of magnitude as that in a compression of the velocity in 4. This
accounts for the 'off'-response of the sensory ending in purely mechanical
terms.

INTRODUCTION

The characteristics of the electrical response of the Pacinian corpuscle
to mechanical stimulation, the generator potential, have been extensively
studied under a variety oftest procedures and conditions (Alvarez-Buylla &
de Arellano, 1953; Gray & Sato, 1953; Loewenstein & Rathkamp, 1958;
Diamond, Gray & Inman, 1958; Loewenstein, 1958, 1959, 1961 a, b;
Alvarez-Buylla & Remolina, 1959; Ishiko & Loewenstein, 1961; Inman &
Peruzzi, 1961; Illyinsky, 1962; Loewenstein & Mendelson, 1965). The
structure of the corpuscle is also well known (for recent studies, see
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Pease & Quilliam, 1957; Cauna & Mannan, 1958; Shanthaveerappa &
Bourne, 1963). However, the manner in which structure influences re-
sponse is less well understood. The electrical response arises at the non-
myelinated nerve ending, which is the transducer proper (Loewenstein &
Rathkamp, 1958), and the mechanical energy that drives the transducer
is transmitted through a fluid-filled lamellated capsule which serves as
coupling between the external mechanical stimulus and the transducer.
Clearly, the structure of this capsule must play an important role in
determining the mechanical forces acting on the transducer and, hence, in
determining the response characteristics of the transducer. The present
article concerns this role. It develops an analysis of a mechanical model
of the corpuscle which closely resembles the actual structure, and provides
a theory which accounts for many features of the transducer response.
The structural features of the Pacinian corpuscle essential for the

purposes of the present study are shown diagrammatically in Fig. 1. The
sensitive nerve ending extends centrally for most of the length of the
corpuscle. It is surrounded by a cylindrical core structure which consists
of a closely packed laminated arrangement of membranes (lamellae). The
core is in turn surrounded by a series of lamellae whose spacings increase
with diameter and whose shapes range from nearly cylindrical close to the
core, to rather spherical at the surface. The spaces between the lamellae
are ifiled with a liquid which will be assumed to have mechanical properties
of density and viscosity close to those of water.
The present study is concerned with the transmission of mechanical

stimuli from the outer surface of the corpuscle through the lamellar
structure to the surface of the core. There is another chain of events in the
propagation of stimuli through the core itself and, finally, in the generation
of the electrical output of the nerve ending under the mechanical stimulus
it receives. This latter sequence is not considered here. The core structure
is treated as a comparatively rigid element. The work of Hubbard (1958)
makes it clear that the deflexions of the core are disproportionately small
compared to those of the outer lamellae; the slope of the deflexion-radius
curve is much less near the core than near the outer lamellae. Thus, as a
first approximation, the core will be assumed to be rigid.
The analysis rests on the following mechanical notions: (i) A closed

membrane lamella, such as a sphere or a spheroid filled with an incompres-
sible fluid, tends to retain its shape by virtue of the elasticity of the
lamella. After a deformation by an external force, it returns to its original
shape by elastic force. (ii) In addition to elastic force, there is viscous
force produced by deformation in a multi-layered lamella system (cor-
puscle) due to flow of fluid in the spaces between the lamellae. When the
corpuscle is compressed, the spacing of the lamellae decreases along the
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line of compression and increases at right angles to it. The lamellae are
considered to be impermeable, so that fluid must flow between them.
(iii) The lamellae are interconnected by elastic elements: a static displace-
ment of one lamellae results in displacement of lamellae located some
distance away. Such a propagation of displacement cannot be provided
by fluid pressure under static conditions (see below).

Lamellae

t' 850#g 'I t5 500p

Fig. 1. Diagram of a Pacinian corpuscle in longitudinal and transverse sections
showing principal elements of its structure. Dimensions are typical for a corpuscle
of the cat mesentery.

Two models were considered in developing the analysis. First, a
spherical model was used to study some properties and characteristics of
a closed membrane system. The qualitative behaviour of the spherical
model is discussed below. The spherical-model represents the outermost
lamellae of the Pacinian corpuscle quite well. However, the inner lamellae
are more cylindrical in shape. To represent the entire corpuscle, a series of
concentric cylindrical membranes was used as a second model. Displace-
ment and pressure in response to static and dynamic stimulation were
analysed for this model.

SPHERICAL MODEL

The mechanical notions above are valid for any closed membrane
system. They are discussed below in terms of a spherical system. Each
of the points made below has also been formulated analytically. The
corresponding formulae have been derived, but are not included, since
only the conceptual aspects of the spherical model will be used here.
The first idea is that an elastic membrane filled with a liquid tends to

retain its shape. In the case of a sphere, if a compression is enforced along
a certain diameter, the cross-section perpendicular to that diameter will
increase, since the volume must remain constant. The stretching of the
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perimeter of this cross-section results in a tension in the membrane which
tends to restore the initial shape. This restoring force is one of the two
principal elastic forces in the model of the Pacinian corpuscle.

Secondly, consider a rigid sphere surrounded by a slightly larger con-
centric spherical membrane with the space between the rigid sphere and
the membrane filled with an incompressible fluid. If the spherical mem-
brane is compressed along a diameter, it will again stretch along the
equatorial plane. The fluid must flow away from the poles toward the
equator during the compression, since the total volume remains constant.
Ifthe compression is applied slowly, fluid flow takes place easily; but, if the
compression is applied rapidly, the flow may be appreciably hindered by
the action of fluid viscosity. The flow through the narrow space between
the rigid sphere and the membrane may require a substantial driving
pressure at the poles. The pressure will be exerted on the rigid sphere, as
well as on the fluid. This is one mechanism by which viscosity is assumed
to promote transmission of pressure from lamella to lamella in the Pacinian
corpuscle.

Fig. 2. Lamellated model. An inflated balloon, A is suspended inside another
inflated balloon, B. B may be compressed by the forces P without distorting A.

The third notion of interest is that there must be elastic connexion
between lamellae in the Pacinian corpuscle. A simple experiment with two
balloons, as illustrated in Fig. 2, is instructive in this regard. A balloon,
A, filled with a liquid, is suspended inside another balloon, B, similarly
filled. If the balloon B is slowly compressed, the balloon A will not be
deflected or distorted in any way, until the outer balloon, B, touches the
inner one, A. In the Pacinian corpuscle, however, a static compression of
the outermost lamella is transmitted to lamellae considerably below the
surface (Hubbard, 1958). Hence, there must be more than fluid contact
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between lamellae. In the model, weak elastic elements are assumed to
connect adjacent lamellae in the radial dimension. These connexions are
assumed to be uniformly distributed over the surface, and to be so thin
as to offer no significant resistance to fluid flow between lamellae. The
connexions presumably represent the occasional attachments between
adjacent lamellae seen in photomicrographs (cf. Pease & Quilliam,1957).
The lamellae themselves are assumed to be impermeable for the brief
periods considered in the mechanical analysis; fluid may flow between
them, but not across them.
The above discussion rests, in part, on two ideas which are also of interest

in themselves. The first is that in a fluid at rest, neglecting the effect of
gravity, the pressure is uniform. Hence, the pressure in the space between
two membranes is hydrostatic when the membranes are at rest. Secondly,
a uniform pressure applied to a membrane filled with an incompressible
fluid produces no deformation. The only result is to raise the pressure
throughout the enclosed fluid by the amount of the applied pressure.
Hence, in dealing with pressures applied to the Pacinian corpuscle, only
the non-uniform part of the pressure distribution will be assumed to
produce deformation; the uniform component or hydrostatic pressure will
be disregarded. This assumes, in turn, that the transducer element of the
nerve ending of the Pacinian corpuscle is sensitive to distortional strain
and not to hydrostatic stress. There is no direct evidence for this in the
Pacinian corpuscle. It is difficult to obtain such evidence, because of the
very fast adaptation of the corpuscle's electrical response; and attempts
in this direction have failed for technical reasons (Goldman, D., and Gray,
J. A. B., personal communication). However, definite information on this
point is available in a more slowly adapting mechano-sensitive nerve
ending, in which this difficulty does not exist, and in which it is clear that
distortional strain but not hydrostatic stress elicits electrical responses
(Loewenstein, 1960).
The ideas discussed above are presented in terms of a spherical geometry,

because this case is readily visualized. In the subsequent analysis, a
cylindrical model is used, which is more realistic for the inner lamellae of
the corpuscle. However, the assumptions of the analysis are such that all
of the ideas and conclusions drawn above remain valid and are retained.

CYLINDRICAL MODEL

The cylindrical model is shown schematically in Fig. 3. The core of the
corpuscle is represented by a solid circular cylinder which, for the purposes
of the present analysis, is considered to be rigid. At each end of the core,
there are rigid circular terminal plates to which the various lamellae are
attached.
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The spaces between the lamellae are filled with an incompressible viscous

fluid. The lamellae are sealed against fluid leakage at the terminal plates
so that the volume enclosed by any lamella is fixed during deformation of
the corpuscle. With respect to stresses developed in the lamellae, the ends
supported by the terminal plates are simply supported, i.e. free to move
in the direction parallel to the axis of the cylinder.

Adjacent lamellae are connected by radial connexions which hold the
lamellae in position at rest. These connexions play the same role as in the
spherical model; they are weak, thin springs which are distributed
uniformly and do not restrict fluid flow.

a b

Terminal Core

Terminal iy plateLael
plate Lamella

Core

Fig. 3. Cylindrical model of a Pacinian corpuscle. (a) Longitudinal cross-section.
(b) Transverse cross-section. Explanation in the text.

A squeezing action on the cylindrical model may be produced by a
pressure distribution on the surface of the corpuscle which is symmetric
with respect to the plane 0 = + jt (Fig. 3b). It is assumed that the
pressure distribution is symmetric with respect to the plane x = 0 (Fig. 3 a).
Any such distribution may be represented by a double Fourier series of the
form

P = PO+2kZ2mAAm cos (21c6) cos (mir7), (1)
where k and m each take on the values 1, 2, 3, .., and the amplitude
coefficients Akin have the units of pressure, dyn/cm2. The term PO represents
a uniform hydrostatic pressure equal to the mean of p. The remaining
terms of the series each have a zero mean. The hydrostatic term po raises
the pressure by po throughout the model, but produces no deflexion and is
assumed also to have no effect on the nerve ending of the corpuscle.
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The restriction to symmetric pressure distribution with respect to x may

be removed by including a second series of the form 2YA'm cos (2k0)
(sin minxlb) in eqn. (1). The analysis for such pressure distribution is
similar to that given below for the symmetric distribution represented by
the Akm terms in eqn. (1).
Each of the Akm terms will produce a deformation of the corpuscle

proportional to cos (2kO) cos (mirx/b). However, it may be expected that
the elastic resistance of any lamella will increase with both k and m, but
the viscous resistance will decrease as k and m increase. Since the time
constant in any mode is proportional to the ratio of viscous resistance to
elastic modulus, it follows that the lowest frequency response will be
achieved by the lowest mode, i.e. k = m = 1. Hence this mode is singled
out and treated exclusively in the remainder of the analysis. Henceforth
the term 'pressure' will be used to designate the symmetric component
whose amplitude coefficient is All in eqn. (1).

Consider the ith membrane, Fig. 3, under the pressure pi given by

= Ai cos (20) cos (r b (2)

where Ai is a coefficient equal to the maximum value of the pressure P,
dyn/cm2. In the absence of the radial springs connecting the lamellae, the
deflexion wi of the membrane at any point will be

wi = Bi cos (20) cos ( (3)

where wi = radial defiexion measured positive inward (cm),
a2 I ___

.B. = AiKi, Ki = -d l+22' (4)

Ki = compliance of the ith membrane (cm3/dyn),

a, = radius of the ith lamella (cm),

di = thickness of the ith lamella (cm),
b = length of the corpuscle (cm),
E = Young's modulus (dyn/cm2).

Eqns. (3) and (4) are derived in Appendix A.
Consider next the stress developed in the radial springs in the ith

fluid-filled space. This stress, oi, will depend on the relative motion of the
ith and (i - I)th lamellae (Fig. 3 b). The stress will be the product of the
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strain and the elastic modulus which is assumed to be aE, where a is a
constant much less than unity, since the springs are thin and soft. Thus

= Wi'-Wi zE, (5)hi
where hi = spacing of the ith lamella (cm) (Fig. 3b), and the remaining
symbols are the same as used previously. Assuming both wi and wi-, to
contain the factor cos (20) cos (rx/b), eqn. (5) may be written

C= cos (20) cos 7T (6)

Combining eqns. (3), (5) and (6) yields

ci-4h l-oc E. (7)

Finally, consider the fluid motion in the ith fluid-filled space. Under a
relative velocity (wi -w&_), where the dots denote differentiation with
respect to time, there will be a viscous pressure Pi generated in the fluid
of the form

Pii = Di cos (20) cos 7T b (8)

where Di is an amplitude coefficient, dyn/cm2. It is shown in Appendix B
that Di is given by

Di= Ri(B*-Bi_,), (9)

where Ri = 2 (10)
h?r(+4b2' (0

where b, ai and hi are used as previously defined; Ri is a viscous resistance
coefficient, dyn sec/cm3; and #t is the fluid viscosity, dyn sec/cm2.
In the derivation of eqn. (10) the inertia of the fluid is neglected, because

the Reynolds number of the flow is small. In considering the motion of
each lamella, the inertia of the lamella is also neglected. Then the equation
of motion ofany lamella reduces to the statement that the deflexion of the
lamella at any time is the static deflexion that would be produced by the
instantaneous load, if it were held constant. This load is the difference of
the viscous fluid pressure and the radial spring stress on each side of the
lamella. For the ith lamella the equation is

W= = .+ - , (11)P' K
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or in terms of the various coefficients

B-= Ri+1(B 1i Bi)+1 -Bi RE(-Ri(P Bi ) - Bi cE.
(12)

The eqn. (12) applies to every lamella, except the first and the last.
For the outermost (nth) lamella, the first two terms on the right in eqn. (12)
are replaced by An, the coefficient of the external pressure applied to the
nth membrane. For the first membrane adjacent to the core, Bi-, and
Bi-, in eqn. (12) are set equal to zero to represent the stationary core.

MECHANICAL AND ELECTRICAL ANALOGUES

One may now discuss and to some extent compute solutions of the
system of equations represented by eqn. (12) in terms of an electrical
analogue. This allows one to use standard electrical network theory in the
computations; and is also helpful in clarifying some of the concepts
involved which may be more readily understood, perhaps, in an electrical
analogue than in a mechanical one.

,~~~~~~~

Rigid plane

Fig. 4. Mechanical analogue of the Pacinian corpuscle. Lamella compliance is
represented by springs M; radial spring compliance, by springs S; and the fluid
resistance, by dashpots D.

Mechanical analogue. In constructing analogues it is convenient to
consider only half of the corpuscle at a time. If a horizontal plane is
passed through mid-height of Fig. 3b, the two halves are mirror images,
and the displacements and pressure are also symmetrical with respect to
this plane. The action of any lamella may be regarded as transferring a
load from the lamella to this plane. The pressure due to viscous action ofthe
fluid is equivalent to a dashpot connecting adjacent lamellae. The radial
lamella connexions act in parallel with this dashpot. The mechanical
analogue is shown schematically in Fig. 4. The horizontal bars (B) re-
present lamellae. These bars are rigid and weightless in the analogue, and
are constrained to move vertically only, remaining parallel to their original
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position. The compliance of the springs (M) connecting the bars to the
rigid plane corresponds to the lamella compliance Ki. The springs (S)
paralleling the dashpots are the radial lamella connexions and have the
compliance hiocE. The dashpots (D) have the viscous resistance Ri. If the
displacement of the ith bar in the mechanical analogue, measured positive
downwards, be denoted Bi, then it may be verified that eqn. (12) holds
for the analogue by considering the motion of each bar.

Figure 4 displays half of the core which is subject to the forces trans-
mitted by the first radial spring and the first dashpot, corresponding to the
stresses transmitted through the first fluid layer in the corpuscle.

TABLE 1

Mechanical quantity Electrical quantity
Pressure, p, dyn/cm2 Voltage, E, volts
Displacement, w, cm Charge, Q, coulombs
Velocity, tb, cm/sec Current, I, amperes
Mass, M, g Inductance, L, henries
Viscous resistance, R, dyn sec/cm3 Resistance, R, ohms
Compliance, K, cm3/dyn Capacitance, C., farads
Compliance, h1aE, cm3/dyn Capacitance, C., farads

Electrical analogue. The mechanical analogue may now be translated
into an electrical one using the usual correspondences (cf. Mason, 1942).
Table 1 summarizes the mechanical quantities used for the Pacinian
corpuscle. In the mechanical analogue, pressure is replaced by force, and
the units of resistance and compliance are dyn sec/cm and cm/dyn. Mass
and inertial effects have been neglected in the present theory; the electric
analogue contains, therefore, no inductance.

Input C/i Si s(i-1) TOutput
(outer lamelIa) 4 R , j jjj (core)

Fig. 5. Electrical analogue of the capsule of a Pacinian corpuscle in which the
lamella compliance, KR, is represented by the capacitance 0mi; the radial spring
compliance, hi/aE, by the capacitance C,; and the fluid resistance (Ri), by the
electrical resistance, Ri.

The electrical analogue is illustrated in Fig. 5. Each segment of the
ladder network corresponds to one lamella and its associated fluid space.
Thirty such lamellar units, five ofwhich appear in Figs. 4 and 5, are taken
into account in the computations. Note that the parallel spring and
dashpot transform into a series combination of capacitance and resistance
The validity of the electric analogue is established by writing the
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equations governing the network. The voltage across the right-hand ter-
minals of the ith segment (Fig. 5) is Ei-, given by

Qsi

The voltage across Cmi is

Ei-Ei_-= C-*Qi (14)
Qmi

Kirchoff's law may be written in the form

Qmi QmMi-10 = Qsi, (15)
where Qmi and Qsi are the charges on Cmi and Cg, respectively. Substituting
eqn. (15) into eqn. (13)

Ei-Q= mi-RQmi- +RiQmi - Ri Qm(il). (16)
csi csi

A similar equation may be written for Ei; if this equation for Ei and
eqn. (16) for Ei-, are substituted in eqn. (14), the result may be written
in the form

Qmi - 1 (Qm(i+i) - Qmi) (Qmi - Qm(i-V)) + Ri+l(Qm(i+l) -Qmi)
Cmi s(i+i) (si

-Ri(Qlmj-Qm(j_:0)) (17)
This, (17), is the electrical equivalent of eqn. (12).
The voltage Ei represents the total pressure applied to the ith lamella.

The voltage drop across Cmi represents the portion of the applied pressure
carried by the ith lamella. The voltage drops across Csi and Ri are the
analogues of the pressures o-i and Pi transmitted by the radial springs and
viscous fluid action through the ith fluid layer.

In the following, the results of the computations of lamella displacement
will be given first, to be compared with available experimental displace-
ment data. Then the results of the computations of pressure, particularly
of core pressure, will be given. These will be compared with their transduced
effects, the generator currents.

NUMERICAL EXAMPLES

Computations were carried out for the cylindrical model of Fig. 3 with
the over-all dimensions given in Table 2.

TABLE 2. Cylindrical model dimensions

Over-all length, b 700 ,t
Core radius, a. 20 /t
Outer lamella radius, an 255 /cz
Number of lamellae, n 30
Thickness of lamellae, di 1 A
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The lamella spacing is such that the radii of successive lamella, ai, and

ai+1, are related by
ai+1 = yaj, (18)

where y = 1F083 for the first twenty lamellae and 1.10 for the last ten.
This spacing is typical of the Pacinian corpuscle (Hubbard, 1958). The
thickness of a lamella in the Pacinain corpuscles is about 1U (Pease &
Quilliam, 1957). The fluid layer thickness between lamellae was thus taken
as the difference of adjacent lamella radii minus 1,.

TABLE 3. Dimensions and constants of the model of the Pacinian corpuscle

Radial springs'
compliance, hila/E*

(cm3/dyn)

1-32 x 10-7
1-59 x 10-7
1-89 x 10-7
2-22 x 10-7
2*57 x 10-7
2-95x 10-7
3X36 x 10-7
3-80 x 10-7
4X28 x 10-7
4X80 x 10-7
5-37 x 10-7
5*98 x 10-7
6-64 x 10-7
7-36 x 10-7
8*14 x 10-7
8*98 x 10-7
9*89 x 10-7
1*09 x 10-6
1'19 x 10-6
1*31 x 10-6
1*77 x 10-6
1-97 x 10-6
2-18 x 10-6
2-42 x 10-6
2-68 x 10-6
2-97 x 10-6
3-29 x 10-6
3-64 x 10-6
4-02 x 10-6
4-45 x 10-6

Viscous
resistance,*

Ri(dyn sec/cm3)

4-88 x 105
3-24 x 105
2-27 x 105
1-66 x 10'
1-25 x 105
9*72 x 104
7*70 x 10'
6'21 x 104
5.09 x 104
4-22 x 104
3-54 x 104
300 x 104
2-56 x 10'
2-20 x 104
1-91 x 10'
1-66 x 104
1 45x 10'

1*27 x 104
1-12 x 104
9'87 x 103
4 79 x 103
4-18 x 103
3-64 x 103
3*18 x 103
2-77 x 103
2-41 x 103
2-09 x 101
1-81 x 103
1-56 x 103
1-34 x 103

* For electrical equivalents see Table 1.

The density and viscosity of the fluid were taken to be the same as of
water, i.e. 1 g/cms and 0-01 dyn sec/cm2, respectively. The modulus of
elasticity, E, was assumed to be 5 x 10s dyn/cm2. This value is typical of
tissues such as arterial walls (McDonald, 1960) and we assumed that it is
of the same order for the corpuscle. The coefficient ac which controls the
compliance of the radial springs was determined by making a number of
computational runs with various values for a and selecting the value

Lamella
no.

Core
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Radius
(U)
20-0
21-7
23*5
25*4
27X5
29*8
32-3
34-9
37-8
41-0
44-4
48-1
52*1
56-4
61-1
66*1
71-6
77-6
84-0
91.0
98-5
108-4
119;2
131-2
144-3
158-7
174-6
192-0
211*2
232*3
255*6

Lamella
compliance*
Kj(cm8/dyn)

1-69 x 10-3
1*44 x 10-3
1-23 x 10-a
1.05 x 10-3
8-96 x 10-4
7*65 x 10-4
6 54 x 10-4
5B58 x 10-4
4-77 x 10-'
4-08 x 10-'
3.49 x 10-4
2-99 x 10-'
2*56 x 10-4
2*19 x 10-4
1588 x 10-4
1*62 x 10-4
1-39 x 10-'
1F20 x 10-4
1-03 x 10-'
8-94 x 10-'
7.53 x 10-5
6-37 x 10-5
5-41 x 10-'
4-62 x 10-5
3-98 x 10-5
3-44 x 10-5
3-01 x 10-5
2-65x 10-5
2-36 x 10-5
2*13 x 10-5
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which had the best fit with Hubbard's (1958) displacement data for the
Pacinian corpuscle. The coefficient used was a = 0-0001.

Three types of computations were carried out: (a) For a static displace-
ment applied to the corpuscle, an analysis of the electrical analogue was
performed with a fixed input voltage, neglecting the presence of the
resistances. (b) For various fixed frequencies of input voltage, the steady-
state response of the electrical analogue was computed using standard
network theory. (c) The transient response of the system was determined
by integrating the set of differential equations (12) numerically by a finite
difference technique. All computations were performed on an IBM 7094
computer.
As to the first step, the dimensions, compliances and resistances were

computed from the data in Table 2 and eqns. (18), (4), (5) and (10). Table 3
gives the results. Once these coefficients were determined, electrical net-
work theory was employed in setting up the computations of displacements
and pressures, using the translation given in Table 1.

COMPRESSION

Di8placements
Staitc di8placement8. The term static displacement is used here to denote

the change in radius of any lamella from its normal position, when the
corpuscle is subjected to a compression which is held fixed for a long time
or is applied at a very slow rate. In this static state, there are no velocities
in the corpuscle and, hence, in the electric analogues there are no currents.
The resistances in the circuit then play no role. The application of a static
pressure to the corpuscle corresponds to applying a fixed voltage to the
analogue network which then acts as capacitive voltage divider. All we
need to solve this case is the relation between charge and voltage on a
capacitor, plus the notion that the charge must be conserved by Kirchhoff's
law (eqn. 15).
The static displacements computed for various amounts of total com-

pression of the corpuscle are shown in Fig. 6. To be precise, the ordinates
are the coefficients Bi in eqn. (3); each value is equal to the maximum
displacement of any point on a given lamella. The abscissa is the radius
measured from the axis of the corpuscle. The numbers on the curves give
the total compression applied, which equals twice the displacement of the
outermost lamella. The displacement, at any radius, is proportional to the
applied compression in the present linear theory.
The theoretical curves in Fig. 6 are in good qualitative agreement with

the experimental measurements of lamella displacements reported by
Hubbard (1958). The static displacement decreases rapidly with radius,
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and becomes nearly zero in the range of radii close to the core. In this
range, the displacements are too small to be measured with Hubbard's
techniques, which may account for their being reported as zero (Hubbard,
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Fig. 6. Computed static lamella displacement. The numbers on the curves are the

total compressions in /. applied to the outermost lamella.

1958). In both the theoretical treatment here and Hubbard's experimental
results, the displacement is proportional to the applied compression.
A feature of Hubbard's experiments which is not reproduced by the

present theoretical treatment is a levelling off of the displacement-radius
curves near the outermost lamellae (Hubbard, 1958, Fig. 11). This is
probably due to the fact that in Hubbard's experiments the compression
is large, and the displacement is measured perpendicular to the applied
compression. These factors introduce non-linearity at large compressions.
Dynamic displacement. A mode of stimulation of particular physiological

interest is that of a suddenly applied pulse of displacement or velocity.
We will consider here the case of a total compression of 20,u accomplished
with a uniform velocity in 2 msec. This case was selected for computation,
because it is within the ranges ofdisplacement and velocity ofphysiological
stimuli, and because it is the type of stimulus often used in experimental
work with Pacinian corpuscles for which much information on its electrical
response is available.
The corresponding problem in the electric analogue is that of finding the

currents, voltages, and charges in the network for a constant current input
during the 2 msec of imposed velocity and zero current input upon ces-
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sation ofthe outer lamella movement. This problem was solved numerically
by considering a series of small time steps (At = 0 I msec) during each of
which the currents flowing in the circuit were assumed to be constant. The
charge on each capacitor is equal to the integral of the current flowing
through it, and its voltage is adjusted accordingly at the end of each time
interval. Based on these new voltages, the currents flowing were re-
computed, assumed constant for the next time interval, and so on. The
initial charges and voltages on all capacitors are zero and the initial
voltages across each of the resistances in the analogue circuit are equal.
The magnitude of this voltage is the product of the input current and the
effective resistance of all 30 parallel resistors Ri.

Results of the transient computations are shown in Fig. 7. The total
displacements of three different lamellae are given as functions of time in
Fig. 7a. To make a full comparison with Hubbard's experimental data, we
have computed also the 'equivalent static' and 'dynamic' displacements,
as used by Hubbard. Figure 7 bshows the 'equivalent static displacement',
which is the displacement which would result if the instantaneous displace-
ment of the outermost lamella were held fixed for a long time. Figure 7 c
shows the 'dynamic' component of displacement, which is the total dis-
placement of Fig. 7 a, minus the 'equivalent static displacement' of Fig. 7 b.

The computed curves in Fig. 7 are in good qualitative agreement with
the experimental observations reported by Hubbard (1958). Some points
of agreement are as follows.
The total displacement increases steadily during the entire 2 msec course

of applied compression. Thereafter, the displacements of the inner lamellae
decrease with a time constant of the order of a few milliseconds. The
asymptotic values of the total displacements are, of course, the respec-
tive static values.
Both the computed and experimental curves of static displacement have

a ramp shape. The rounding at the peak of Hubbard's experimental curves,
which is absent in the computed curve of Fig. 7 b, is due to differences in
stimulation. While for the computed results compression is ideally ramp-
shaped, in Hubbard's experiments the applied compressions were rounded
at their peaks.
The curves of dynamic displacement in Fig. 7 c resemble those of

Hubbard in shape and in order of decay time. Moreover, in both experi-
mental and theoretical values all displacements decrease with radius over
the range shown in Fig. 7. (By definition, the dynamic displacement is
zero at the outermost lamella.) A point of apparent disagreement concerns
the ratio of the peak dynamic to the static displacement close to the core.
The ratio is larger in the experimental curves. This may possibly be due
to the difficulty of resolving the small static displacements near the core
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Fig. 7. Computed displacements of selected lamellae against time for a total com-
pression of 20 #t applied uniformly in 2 msec and then maintained. The number
identifying each curve is the ratio of the particular lamella radius, for which the
displacement is shown, to the radius of the outermost lamella. Outer boundary
of core is at ratio 0-078. (a) Total displacement. (b) Equivalent static displacement.
(c) Dynamic component ofdisplacement (see text for definitions). (d) Displacement
(D) and velocity (V) of outermost lamella.
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in the experiments. For the peripheral lamellae, the ratios are in good
agreement.

In general, the computed displacements, both static and dynamic, re-
produce the features of the experimental values sufficiently well to give
confidence that the concepts underlying the present model are valid.

Pressure
With this encouraging agreement between computed and experimental

lamella displacements, we proceeded to compute the pressures inside the
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Fig. 8. Computed static pressure on lamellae against radius, for a static compression
of 20,u applied to the outermost lamella.

corpuscle. The final effect of the mechanical transmission through the
corpuscle is the pressure distribution exerted on the core. This is the factor
which is directly responsible for the electrical transducer response. Lamella
displacements outside the core are not of themselves of interest, except in
that they participate in the transmission of this pressure. This is where
the computations were able to go beyond the experimental work. The
pressures which are at present not measurable inside the small corpuscle
can be computed for the model and compared with the transducer response.
These pressures exerted on any given lamella are the voltages Ei applied
to the capacitances Cmi in the electrical analogue.

Static pressure. Figure 8 gives the pressures computed for the case of a
static compression of 20,u. The striking feature of the pressure curve is
that the static pressure on the core is only a small fraction (3 %) of that
on the outermost lamella. This is chiefly due to the preponderance of the
stiffness of the lamella (M, Fig. 4) over that of the radial lamellar con-
nexions (S). Thus, the pressure load is picked up largely by the outer
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lamellae, and very little pressure reaches the interior of the corpuscle.
This constitutes the basis of the phenomenon of receptor response adapta-
tion under static compression, discussed in detail further on.
Dynamic pressure. (a) Sinusoidal stimulation. The computation of the

core pressure at any frequency may be treated as a problem in alternating
current theory applied to the network of Fig. 5. The electrical equivalents
of the mechanical quantities are given in Table 1. We utilized a computer
program already written for a generalized ladder network which was kindly
made available to us by Professor 0. Wing and Mr S. Brueck, Department
of Electrical Engineering, Columbia University. The program starts from
any given output voltage (alternating pressure on the core), and proceeds
to compute the impedances, currents and voltages at each ofthe subsequent
junctions.

100 _
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Frequency (c/s)

Fig. 9. Core pressure against sinusoidal stimulus frequency. Computed core
pressure resulting from sinusoidal displacement ofthe outermost lamella at constant
peak pressure of 100 dyn/cm2.

The main result of the computation is shown in Fig. 9. The ordinate is
the peak pressure exerted on the core for a peak pressure of 100 dyn/cm2
on the outermost lamella at the frequencies given by the abscissa. Each
pressure has the spatial distribution given by eqn. (2) and is sinusoidal in
time. Zero frequency corresponds to the static case in which the pressure
transmitted to the core is only 3% of the applied pressure. At high
frequencies, circa 300 c/s, the pressure on the core is 90% or more of the
applied pressure. Most of the pressure transmitted is due to the viscous
action of the interlamellar fluid. In the electric analogue, this action
corresponds to the predominance of the resistive elements over the
capacitive impedance at high frequency.

(b) Linear stimulation. Computations of the dynamic pressure resulting
from a ramp-compression were made on the basis of eqn. (12). Figure 10
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shows the peak pressures on the outermost lamella, on the core and on one
intermediate lamella resulting from a compression, as used above for the
analysis of dynamic displacement (Fig. 7). The pressures have the spatial
distribution given by eqn. (2) in each case.
At the moment the motion is initiated (time zero), the pressure, entirely

of viscous origin, is uniform from the outermost lamella to the core. As the
lamellae deflect and pick up the load, the pressure on the outermost lamella
increases and the pressure on the core decreases. At the time the motion
of the outermost lamella ceases (2 msec), there is a large and sudden drop
in the pressure throughout the corpuscle. This is due to a corresponding
change in the viscous component of force: the decrease in velocity of the
outer lamella at time 2 msec produces a drop in fluid pressure throughout
the corpuscle which is equal to the rise in pressure produced by the increase
in velocity at time zero, since the system is linear. For the constants
assumed for the present model, the pressure on the core goes slightly
negative. A negative sign here means simply that the local force vector has
reversed direction. This is associated with a rotation of the entire pressure
distribution by 90° in 0 with respect to the compressed case (eqn. (2);
Fig. 3). But the main point is that at time 2 msec the core pressure drops
to near zero. The core pressure roughly follows the applied velocity.
Some qualitative aspects of the results on pressure transmission (Fig. 10)

are immediately clear from an inspection of the electrical analogue, which
operates as a high-pass filter. The application of a step velocity to the
corpuscle corresponds to applying a step current to the electrical analogue
(Fig. 5). The resulting initial voltage will be immediately applied to, every
resistor in the network, and a set of currents will start to flow as if the
capacitances, initially uncharged, were absent. (In mechanical terms, this
means that all the pressure applied is immediately transmitted to the core
by viscous action without loss, and fluid starts to flow between lamellae.)
As time proceeds, the capacitative voltages increase and become relatively
more important than the resistive ones. In the final static state, the
current is zero and the network acts as a purely capacitative voltage
divider: the voltage drops across each capacitance Cm from outside to
core (Fig. 5). The increase in Cm (lamella compliance) and the decrease in
C, (lamellar connexion compliance) from outside to core, and the relative
values of Cm and C,, all concur in causing the voltage (pressure) drop to be
steep (Fig. 8).

DE-COMPRESSION

When a Pacinian corpuscle is released suddenly from its compressed
state, a second generator response (off-response) is produced which is
similar to that produced during the dynamic phase of the compression
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(on-response) (Gray & Sato, 1953). To clarify the origin of the off-response,
we have computed the pressure transients inside the corpuscle during a
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Fig. 10. Time course of dynamic pressure. (a) Computed pressure on outermost
lamella, at 0 75 of corpuscle radius, and on the core against time for a total com-
pression of 20/s applied uniformly in 2 msec and then maintained. (b) Displacement
(D) and velocity (V) of outermost lamella.

sudden release from a static compression. During such a release, the
corpuscle tends to return to its circular cross-section under the action of
the elastic forces generated by the lamellae and their radial connexions.
The action may be equated to applying a negative pressure to the outer-
most lamella so as to bring the net pressure on it to zero. The negative
pressure here considered develops with sufficient velocity so that the
rate-limiting factor of motion is that given by the passive elastic return
of the lamellae. This clearly corresponds to the situation in which electrical
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off-responses are elicited under physiological conditions (see, for example,
inset of Fig. 14).
The resultant pressure on any lamella is computed as the static pressure

responsible for the positive pressure during compression, plus the transient
pressure response to the negative pressure parenthesis eqn. (12). Figure 11
gives the time course of the computed pressure on the core for a sudden
release from a static compression of 20,t. The rate of release here is un-
restrained by external mechanical forces and is solely determined by the
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Fig. 11. Pressure during 'off'-phase. Pressure on core against time for a sudden
release from a total compression of 20ju. Negative sign stands for reversal in direc-
tion of total pressure. See text.

mechanical constants ofthe lamella system. The core pressure, nearlyzero in
the static state, rises abruptly to about - 122 dyn/cm2 upon release of com-
pression. At the moment of release, as in the initial phase of dynamic
compression discussed before, the change in the pressure on the core is
purely viscous and uniform throughout the corpuscle. Thereafter, the
pressure on the core decays to zero in a few milliseconds, as the velocities
in the system decrease.

PHYSIOLOGICAL CORRELATES

Receptor adaptation
The present analysis sheds light on the mechanisms of various physio-

logical phenomena. We will consider first those concerning receptor
adaptation. This wide-spread phenomenon in mechanoreceptors (par-
ticularly marked in receptors of the lamellated type) manifests itself, at
the generator level, as a decrease in amplitude of electrical output with
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decreasing stimulus velocity (cf. Gray & Sato, 1953; Alvarez-Buylla &
Remolina, 1959).

Adaptation to static loading. Both the physical aspects and the physio-
logical meaning of adaptation are well illustrated by experiments in which
a Pacinian corpuscle is compressed to a fixed level and this level is main-
tained for some time. The resulting generator potential declines then to
zero within a few milliseconds, regardless ofthe duration ofthe compression
(see, for example, Fig. 12).
The steady phase of the stimulation corresponds clearly to the conditions

of static loading analysed before (Fig. 8). As the analysis shows, there is
little pressure in this condition at the centre of the corpuscle where the
transducer nerve ending is located. Under static compression, pressure in
the capsule is only of elastic origin, and such pressure propagates poorly
from periphery to centre, because the compliance of the radial lamella
connexions is high relative to that of the lamellae themselves. The pressure
exerted on the outermost lamella, in part, is carried by the lamella itself
(M; Fig. 4), and, in part, passed on to the next lamella by the radial
lamella connexions (S); and so on. The connexions are so compliant,
however, that almost the entire pressure load is picked up by the outer
lamellae; the pressure finally passed on to the core has dropped two orders
of magnitude (Fig. 8).
During the initial dynamic phase of the compression, the situation is

quite different. Until the compression reaches its static level, the existing
fluid velocities set up pressures by viscous action, and such pressures
propagate well from periphery to centre. In a ramp-shaped compression,
the pressure on the core is of the same order as that on the periphery of the
capsule, before the static level is attained (Fig. 10). At the onset of com-
pression, the core pressure is, in fact, equal to the peripheral one. During
the remainder of the dynamic phase, the pressure on the core becomes
relatively smaller, as the pressure is distributed over the peripheral elastic
elements of the system; but for a pulse duration of the order of 2 msec the
core pressure still amounts to a sizeable part of the peripheral one. Only
starting with the static phase of compression is the fall in core pressure so
abrupt and pronounced.
The compression which gave rise to the generator potential of the

experiment illustrated in Fig. 12 is comparable in amplitude and velocity
to that for which the core pressure was computed (Fig. 10). In the experi-
ment, the compression is rounded at its peak; this will cause the core
pressure to drop less steeply than in the computed case. But except for
this difference, which amounts to less than a fraction of a millisecond in
falling time of pressure, the pressure curve at the core in the experiment
should correspond to that of Fig. 10. We may then try to see how well this
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curve accords with that of the transduced current of the receptor. The
generator potential, recorded extracellularly from the nerve fibre at a
distance of about 800,t from the tip of the nerve ending, rises in 2 msec to
peak and falls to zero with a time constant of 3-5 msec (Fig. 12). During
the entire response, electrical charge is being passively redistributed over
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Fig. 12. Comparison between core pressure and transducer response. (a) Computed
core pressure (P,) resulting from an external lamella displacement of the kind
illustrated in Fig. lOb.

(b) Generator response to a similar displacement in a Pacinian corpuscle. Dis-
placement is produced by a piezo-electric crystal, and the resulting generator
potential is recorded from the nerve fibre where it emerges from the corpuscle.
D, tracing of photo-electric record of outer lamella displacement; G, tracing of
generator potential; I, derived curve of generator current ('transducer action') as
determined by equation shown in c, where the R-C combination is the lumped
equivalent of the passive electrical components of the nerve fibre system in the
corpuscle (see text for uncertainties).

(c) Determination of the duration of the 'transducer action' of generator
response G. See text.
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the capacitance of the nerve fibre membrane. On the assumption that the
later part of the falling phase of the response represents passive charge
transfer among the capacitative elements through the conductance of the
system recovered to resting value, we may estimate the duration of the
transducer action, i.e. of the active phase of the transducer current. This
is considered as extending from the time of response onset until the time
when the falling phase becomes a pure exponential decay (Fig. 12c). The
duration of the transducer action may then be compared directly with that
of the core pressure, its assumed precursor. The comparison is made in
Fig. 12. The agreement between the two is very satisfying. Evidently, the
mechanics of the corpuscle, i.e. the mechanical filter action of the lamellae,
can alone account for the process of adaptation of the generator response.

Ideally one would like to compare the whole time course of the transducer action with
that of the core pressure. An approximation of the time course of the transducer action may
be obtained by differentiation of the generator potential with respect to time, and compensa-
tion for the passive decay of generator potential by adding to the derivative at each instant
the corresponding value of the instantaneous generator potential divided by the time
constant of the passive decay as applicable to a network of the kind illustrated in Fig. 12c,
inset. Figure 12 gives the time course of the transducer action so obtained (I) and that of
the core pressure (Pa) on the same time scale. It should be noted, however, that the validity
of derivation of the whole time course of the transducer action is based on the validity of the
assumption that the passive charge transfers during the transducer action are not themselves
time-dependent in the excited membrane, i.e. that they are largely ruled by the time
constants of the non-excited membrane. This is uncertain and, therefore, the precise shape
of the derived I curve is uncertain. The terminal points of the curve, i.e. the duration, do
not depend on these assumptions; and the main point here is the good correspondence
between the duration of the transducer action and the duration of the core pressure. This
correspondence alone warrants the above conclusion on generator response adaptation.

The filter action of the capsule is a sufficient factor in determining the
rate of adaptation of the generator potential. But is it the only one, or is
the duration of the generator potential itself also rate-limiting in adapta-
tion? This question received recently a direct answer from experiments.
In these experiments, the filter action of the peripheral lamellae was by-
passed, and compression was applied rather directly to the core ofcorpuscles
from which most of the lamellae outside the core had been dissected away.
Under these conditions, the generator potential in response to compressions
of the kind considered in Fig. 12 turned out to have durations of 70 msec,
an order of magnitude longer than that in corpuscles with complete
lamella filter equipment (Loewenstein & Mendelson, 1965). Thus, clearly,
the rate-limiting factor of the decay in generator potential to a sustained
stimulus, that is, the rate-limiting factor of receptor adaptation, is the filter
action of the capsule in the Pacinian corpuscle.
The experiments on decapsulated corpuscles also confirm the validity
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of some of the general theoretical concepts of the present analysis. To re-
convert a decapsulated receptor preparation into a receptor of the fast-
adapting kind, i.e. to obtain adequate mechanical filter action by enclosing
the decapsulated core in an artificial lamellated capsule, the following con-
ditions had to be met: (1) the artificial lamella had to be elastic, and (2)
there had to be fluid in between them (Loewenstein & Mendelson, 1965).

Generator mechanisms of fast and slowly adapting receptors. A related
question concerns the electrical generator mechanism as such. Are the
electrical generator mechanisms of a fast-adapting receptor different from
a slowly adapting one in regard to ability of maintaining a current output?
Slowly adapting mechanoreceptors, such as the muscle spindle (Katz,
1950), slow crustacean stretch receptors (Eyzaguirre & Kuffler, 1955;
Krnjevic & van Gelder, 1961; Wendler & Burkhardt, 1961), bee hair-plate
receptors (Thurm, 1964), can clearly hold an uninterrupted current output
for seconds or minutes. In a fast-adapting receptor, such as the Pacinian
corpuscle here, this point is not immediately clear, because the capabilities
ofthe electrical generator in this respect are maskedby mechanical filtering.
However, in view of the prolongation in generator response in partially
decapsulated corpuscles mentioned before and a number of other experi-
mental observations in decapsulated corpuscles (Loewenstein & Mendelson,
1965), it seems likely that the generator capabilities of Pacinian corpuscles
are essentially similar to those of slowly adapting receptors. (Capabilities
for nerve impulse production, however, are markedly different.) Recent
results obtained on fast and slowly adapting crustacean stretch receptors
(Nakajima, 1964) lead to a similar conclusion.

Velocity dependence of the generator response. The primary elements of the
capsule, as used in the present theory, are the lamellae, their radial
connexions, and the fluid. The former two provide the structural elements
and elastic forces for the filter action, and the latter, the viscous element
for the dynamic transmission of forces. The lamellae operates like a series
of dashpot pistons which, in displacing fluid, generate viscous pressure.
The elastic connexions between pistons are so weak that only viscous
pressure propagates to any significant extent through the capsule. Thus
propagation of pressure through the capsule may be expected to be velocity-
dependent. This explains the velocity dependence of the generator response
(Gray & Sato, 1953; Alvarez-Buylla & Remolina, 1959).

Off-response
A striking feature of the behaviour of the Pacinian corpuscle is the

second generator potential which ensues upon release of compression.
This is the 'off-response' of the receptor which probably plays an important
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role in the sensory coding of stimulus duration. The response has two
paradoxical features: (i) it has the same polarity as the 'on-response'; and
(ii) under certain conditions it may have a greater amplitude than the
'on-response'. Both are accounted for by the present analysis.
When the corpuscle is compressed to a steady level, static mechanical

state is reached in about 15 msec. Figure 8 gives the final pressure distri-
bution for a compression of 2Ojt. When compression is released, the energy
stored in the elastic lamellae during compression is set free, and viscous
pressure is developed again. It is easy to see that during release the
resulting local lamellae velocities are reversed and the over-all pressure
distribution is rotated by 900 with respect to those during compression.
But such a rotation introduces no essential change in the mode of response
of the transducer nerve ending. The transducer does not appear to dis-
criminate direction of pressure applied. The polarity (and the order of
magnitude) of the generator response to compression in one plane is the
same as in another, as is readily verified experimentally by rotating a
Pacinian corpuscle around its length axis and varying the angle of com-
pression to a reference plane. Hence, the polarity ofthe generator response
to release will be the same as that to compression.
The question then is whether the core pressure during release from

compression is sufficient to account for the off-response. The analysis shows
that during the dynamic phase of a release, the core pressure can, indeed,
be of the same order as that during the dynamic phase of compression
(Fig. 11).
A further interesting outcome of the analysis is that the peak pressure

in a release can actually exceed that in a compression depending on the
respective velocities. Figure 13 provides a numerical example and a
summary of the relevant parameters. The rate of compression in the
example is 1O /t/msec, and the rate of release initially 12 6 /s/msec, as
determined by the passive mechanical constants of the corpuscle. The peak
pressure resulting from release is greater than that resulting from com-
pression in this case. The difference is due to the fact that the peak core
pressure during compression is determined by the rate of compression, but
is quite independent ofthe final force required to maintain static conditions;
while the peak pressure developed during release depends primarily on this
final force, which may be considerable. This provides a satisfactory ex-
planation for the relative amplitudes of the experimental on- and off-
responses illustrated in Fig. 13, inset.
The present theory attributes the off-response of the Pacinian corpuscle

entirely to mechanical properties of its capsule. The immediate energy
source of the response is assigned to the elastic lamellae, the storage
elements for the energy supplied originally by the external stimulus
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during compression. A simple test for the validity of these notions is
provided by experiments on decapsulated corpuscles. After elimination of
the lamellae outside the core, the off-response can no longer be elicited, al-
though the on-response continues to be present (Loewenstein & Mendelson,
1965).
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Fig. 13. Precursors of on- and off-responses. Time course of computed velocities
and pressures under a compression of 20g applied uniformly during 2 msec and re-
leased suddenly after 60 msec. Release is such that the restoration of the corpuscle
to its normal uncompressed shape is controlled entirely by its passive mechanical
constants. D, displacement of outer lamella (the stimulus). V, velocity of outer
lamella. PO, pressure on outer lamella. Pc, pressure on core.

Inset. On- and off-responses. Experimental generator potentials of a Pacinian
corpuscle in response to compression and release of compression similar to those in
D. The corpuscle is stimulated by the displacements of a piezo-electric crystal
transmitted to the outer lamella by a rigid stylus. Upper beam, generator potential
(calibration, 50,u); lower beam, photo-electric record of stylus displacement. Time
calibration, 10 msec.
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APPENDIX A

Compliance of a simply supported cylindrical membrane
Consider a single cylindrical membrane of length, b, and radius, a, with

axis chosen as in Fig. 3 subject to the inward radial pressure, p

p = A cos (20) cos(T). (A 1)

The equations of equilibrium of the membrane are (Timoshenko &
Woinowsky-Krieger, 1959)

aNx+ 1 aNxo = (A 2)

bN, + 1 -No 0 (A3)
aJx abaO (
No = -pa (A4)

where
N= tension per unit length in the membrane in the x direction,

dyn/cm,
N6 = tension per unit length in the membrane in the 0 direction,

dyn/cm,
N-ce = shear force per unit length in membrane in x and 6 directions,

dyn/cm.
From eqns. (Al) and (A 4):

No = -Aa cos (20) cos (7r ). (A 5)

Substituting eqn. (A5) into (A 3) and integrating yields

Nxo =-2A - sin (20) sinQr). (A6)

Similarly, substituting eqn. (A 6) in (A 2) and integrating yields

N= A 2cos(20)cos jb). (A7)

Two constants of integration not shown in eqns. (A 6) and (A 7) have been
taken equal to zero to satisfy the boundary condition associated with the
assumption of a simply supported boundary, namely, Nx = 0 at x = + lb.
Now the strains ex and e0 in the x and 6 directions, and the shear strain,

y,, may be expressed in terms of the stresses Nx, N6, Nx6, and also in terms
of the displacements u, v, w in the x, 6 and r directions, respectively. The
displacements are hence related to the stresses as follows (Timoshenko &
Woinowsky-Krieger, 1959):
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6X = = (N -vN), (A 8)

6 = 0aEd(No-VNx) (A9)

Yxo = au+a v = 2(1+v)N (A 10)
aaO~~ ax Ed '(A )

where d = thickness of the membrane, cm,
E = Young's modulus, dyn/cm2,
v = Poisson's ratio.

Equations (A 8), (A 9) and (A 10) can be integrated to yield expressions
for the displacements u, v, w after substituting eqns. (A 5), (A 6) and (A 7)
for N., N60 and Nx. The results are:

tb = _bAa 4 -v cos (20) sin (7r) (A 11)U TiEd ir2a2b
2b2A ( 4b2 .I x

v = 2Ed + sin (20) cos b (A 12)

Aa2 1 462 2 /
W = A+Ed 22) Cos (20) cos 7j - (A 13)

Equations (A 13) and (A 1) give directly the formulas expressed by eqns.
(3) and (4) in the body of the paper.

APPENDIX B

Viscous fluid resistance to flow between two cylindrical membranes
Consider a rigid solid cylinder of radius, a, and length, b, with axes as

shown in Fig. 3 surrounded by a cylindrical membrane of radius, a + h, and
length, b, where h is small compared to a, so that a thin cylindrical space is
formed between the membrane and the solid cylinder. This space is
assumed to be filled by an incompressible viscous liquid and the ends
of the space are considered to be sealed against leakage by fixed end
plates. Any motion of the membrane must be such that its total enclosed
volume is constant, and the fluid must flow from one part of the space to
another. This flow takes place through the narrow space of height, h, and
may be categorized as a viscous flow. It will be shown that the expected
Reynolds numbers are small.

If the space height, h, is sufficiently small compared to the radius, a, the
curvature of the cylinder may be neglected in computing the velocity
distribution in the fluid, by a reasoning similar to that commonly employed
in boundary layer and lubrication theory (Pai, 1956). The flow requires a
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pressure field, p, and, under the assumption of a viscous flow at low
Reynolds number, the equations of motion of fluid reduce to (Pai, 1956,
p. 128) ap a2V~

o2x Olbr2X (B 1)
= a2VX (B 2)

where vx and v0 are the components of velocity in the x and a directions,
,t is the viscosity of the fluid, dyn sec/cm2, and s is equal to aO. Under the
assumptions made, p will be independent of r; with the boundary
conditions vx = v, = 0 at r = a and r = a+h, (B 3)

Equations (B 1) and (B 2) may be integrated to yield

h3 ap
12gus' (B5)

Qs = _ h p (B 5)

where Qx and Q8 are the discharges per unit length (cm2/sec) in the x and
s directions, respectively, defined by

Q=f vxdr (B 6)

ra+h
Q=8f v6,dr (B 7)

The velocity profiles are parabolic, as may be expected in a laminar flow.
Now consider the equation of continuity or conservation of mass (Pai,

1956, p. 38) avx + av avr +v ( 8)

ax as Or r

where vr is the radial velocity of the fluid, taken positive in the increasing
r direction. In terms of the membrane displacement w, the radial velocity
at r = a+h is (Vr) r=a+h = -?W, (B 9)

where the dot stands for differentiation with respect to time and -w is
measured positive inwards. Integrating eqn. (B 8) with respect to r from
a to (a + h) yields the equation of continuity in the present approximation
as 9Qx 9Qs

a+ = w (B 10)
Substituting the viscous equations (B 4) and (B 5) in eqn. (B 10) gives

12 a2p a2pB
12t(92+ Fi32)=w (B 11)
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Next suppose that w has the form of the membrane deflexion

w = B cos (20) cos(7T) (B 12)
where B is a function of time. Equation (B 11) becomes an equation for
the pressure, p

h(2p 1 a2p\ .x
- -+2 = B COS (20) cos .r-) (B 13)

where s has been replaced by a 0. The appropriate solution for p which
satisfies eqn. (B 13) is

P = L2(+b2B cos (20) cos ( (B 14)
h3fT2(1+ 4b2/ir2a2) b/

Equations (B 14) and (B 12) lead to the interpretation given in eqns. (3),
(8), (9) and (10) in the body of the paper. In the above derivation only
one boundary of the fluid is considered movable for convenience. If the
other boundary were to move, a similar derivation applies and the relative
motion controls the net viscous pressure, as indicated in the body of the
paper.
As a rough check on the Reynolds numbers of the flows to be expected,

assume the fluid velocities involved to be of the order of magnitude of the
velocities of compression used typically in experiments. From data given
by Hubbard (1958), a velocity of 35 ,/imsec (3.5 cm/sec) is typical. The
largest spacing of lamellae is about 25, (25 x 10-4 cm). Then the typical
Reynolds number of the flow is

RN = -Vh = 3=5(25 x 10-4) - 0875, (B 15)
v 0.01

where v is the kinematic viscosity assumed equal to 1 centistoke. The
Reynolds number is sufficiently small to justify the assumption of linearity
of the equation and to neglect acceleration.
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